Abstract The micromotion of ion crystals confined in Paul traps is usually considered an inconvenient nuisance, and is thus typically minimised in high-precision experiments such as high-fidelity quantum gates for quantum information processing. In this work, we introduce a particular scheme where this behavior can be reversed, making micromotion beneficial for quantum information processing. We show that using laser-driven micromotion sidebands, it is possible to engineer state-dependent dipole forces with a reduced effect of off-resonant couplings to the carrier transition. This allows one, in a certain parameter regime, to devise entangling gate schemes based on geometric phase gates with both a higher speed and a lower error, which is attractive in light of current efforts towards fault-tolerant quantum information processing. We discuss the prospects of reaching the parameters required to observe this micromotion-enabled improvement in experiments with current and future trap designs.